Общие сведения и методы получения
Хром (Сг) — твердый блестящий металл. Как самостоятельный элемент был впервые выделен в 1797 г. Вокеленом из минерала крокоит, который открыл академик Паллас при изучении сибирских минералов в 1765 г. Свое название хром получил от греческого «chromos», что означает цвет, из-за различных цветов его соединений — от зеленого до красного.
Содержание в земной коре 0,035 % (по массе).
В свободном состоянии хром не встречается. Из многочисленных руд, содержащих хром, промышленное значение имеет только хромит FeO-Cr203, в котором содержится более 65 % Сг203 (по массе), остальное FeO. Хром входит в состав многих минералов, в частности в состав крокоита РЬСг04; к другим минералам, содержащим хром, относятся финицит, менахлоит или феникохлоит ЗРЬО-2Ст203, березовит, трапакалит, магнохромит и др. Известна большая группа силикатных минералов, содержащих хром, который придает этим минералам характерную окраску. Хромит относится к классу изоморфных минералов кубической системы, известных под названием шпинелей, которые можно охарактеризовать общей формулой -ТО-У203, где X — ион двухвалентного металла, У—ион трехвалентного металла. В промышленных хромовых рудах содержание С,г203 редко превышает 50 % (по массе). Феррохром с содержанием 65—70 % Сг, используемый в металлургии, получают прямым восстановлением хромовой руды с соотношением Cr:Fe=3:l. Хромит восстанавливают углеродом, причем для получения феррохрома содержание оксида хрома в руде должно быть не менее 48%. В процессе плавки протекает реакция: Fe0-Cr203+4C->--*-Fe + 2Cr + 4CO.
Хром технической чистоты получают алюминотермическим, силико-термическим, электролитическим и другими методами из оксида хрома, который получают из хромистого железняка. Из методов производства технически чистого металла, пригодного для дальнейшего рафинирования, наиболее прост и экономически выгоден электролитический. Стоимость электролитического хрома несколько выше, чем хрома, получаемого другими методами, но примеси из него могут быть удалены наиболее легко. Из методов очистки электролитического хрома от примесей наиболее широкое применение получила обработка хрома в сухом очищенном водороде. В процессе рафинирования из металла удаляется главным образом кислород, несколько понижается содержание азота и других металлических н неметаллических примесей, особенно элементов, имеющих высокое давление паров. Рафинирование электролитического хрома проводится длительным нагревом при 1300—1500 °С в условиях непрерывного притока водорода. Глубокую очистку хрома можно осуществлять также вакуумной дистилляцией с конденсацией Паров на холодной поверхности.
Наиболее чистый хром для лабораторных исследований получают иодидным методом. Этот процесс основан на образовании летучих
иодидов хрома (при 700—900 °С) и их диссоциации на нагретой поверхности (при 1000—1100 °С). Металлический хром после иодидного рафинирования пластичен в литом состоянии (удлинение при растяжении 9—18%).
Физические свойства
Атомные характеристики. Атомный номер хрома 24, атомная масса 51,996 а. е. м., атомный объем 7,23*10-6 м3/моль. Атомный (металлический) радиус хрома 0,128 нм, ковалентный 0,118 нм. Электронная конфигурация внешних оболочек 3d5 4s1. Электроотрицательность 1,6. Значения потенциалов ионизации J (эВ): 6,746; 16,49; 31. При атмосферном давлении хром обладает о. ц. к. решеткой, при комнатной температуре а=0,2884 нм. Энергия кристаллической решетки 337,5 мкДж/кмоль.
Химические свойства
В. В соединениях хром проявляет степени окисления +2, +3, +6, реже +4, +5, +1.
При нормальной температуре хром химически устойчив; почти не окисляется на воздухе, даже в присутствии влаги. При нагреве окисление протекает только на поверхности. Некоторые кислоты, например концентрированная азотная, фосфорная, хлорноватая, хлорная, образуют иа хроме окисную пленку, приводя к его пассивации. В этом состоянии хром обладает исключительно высокой коррозионной стойкостью и на него не действуют разбавленные минеральные кислоты. Хром является электроотрицательным по отношению к наиболее практически важным металлам и сплавам, и если он с ними образует гальванопару, то ускоряет их коррозию,
Электролитически осажденный хром содержит большое количество растворенного водорода — до ~5 % (ат.). В данной системе возможно образование СгН (1,9% Н), СгН2 (3,73% Н) или СгН3 (5,49% Н), которые обладают низкой термической стабильностью и легко разлагаются при незначительном нагревании. Теплота растворения водорода в твердом хроме при 797—1097 °С составляет 105 кДж/моль Н2, теплота образования СгН2Д//обр = 15,900 кДж/моль, Растворимость кислорода в твердом хроме при 1347 °С составляет 0,03% и снижается при понижении температуры. Наиболее распространенным оксидом хрома является Сг203 (31,6 % О), представляющий собой тугоплавкое вещество зеленого цвета (зеленый хром), применяемое для приготовления клеевой и масляной красок. Высший оксид хрома Сг03 — темно-красные игольчатые кристаллы представляет собой хромовый ангидрид, хорошо растворим в воде
Технологические свойства
Хром технической чистоты при комнатной температуре хрупок и приобретает пластичность лишь при нагреве выше 200—225 "С Хром относится к группе хладноломких металлов, пластичность которых резко падает при снижении температуры.
Области применения
Хром широко применяется в металлургии, главным образом в качестве легирующей добавки к сталям различного назначения. Добавка до 3 °/о Сг к обычным углеродистым сталям значительно повышает их механические свойства. Стали с содержанием 5—6 % Сг отличаются повышенным сопротивлением коррозии. При содержании хрома более 10 % стали обладают высокой коррозионной стойкостью (нержавеющие). Хром в качестве легирующей добавки входит также в состав
жаропрочных сплавов иа основе никеля и кобальта. Сплавов иа основе хрома не существует. Большое количество чистого хрома используется в гальванотехнике; хромирование является надежным средством борьбы с коррозией. Хромовые покрытия, помимо высокой коррозионной стойкости, обладают также высоким сопротивлением истиранию.
Хром в виде соединений используется при производстве огнеупорных материалов и пигментов.