Вы здесь

Сурьма

Общие сведения и методы получения

Сурьма (Sb) — металл серебристо-белого цвета с синеватым оттенком. Известна человечеству с глубокой древности.

Латинское название stibium происходит от древнеегипетского «штем». «штим», греческого «стимми» или арбаского «стиби», в ряде стран Евро­пы и США принято название antimonium.

В 1789 г. французский химик Лавуазье включил сурьму в список про­стых веществ и дал ей название «antimoine».

Русское название «сурьма» происходит от турецкого «сюрме», что пе-реводится как «натирание» или «чернение бровей» (первоначальное при­менение сурьмы)

Содержание сурьмы в земной коре по данным разных исследовате­лей 5*10^5—1-10-°и/о (по массе).

Известно более 120 минералов сурьмы, в том числе самородная сурь­ма, интерметаллические соединения, антимониды, сульфиды, простые и сложные оксиды и гидроксиды, хлориды, силикаты, арсенаты и др.

Промышленное значение имеют немногие сульфиды, сульфосоли и оксиды.

Антимонит (сурьмяный блеск, стибнит) Sb S3. Химический состав: 71,7 % Sb, 28,3 % S; иногда содержит примеси мышьяка, серебра и зо­лота (последние два металла, по-видимому, в виде механических приме­сей). Антимонитовые (иногда комплексные) руды являются главнейши­ми источниками сурьмы; в нашей стране, например, на их долю прихо­дится более 85 % всего производимого металла.

Тетраэдрит (блеклая руда) Cui2Sb4Si3, или 3CuS-Sb2S3. Обычно об­разует изоморфные смеси с теннантитом Cu,2As4Si3; содержит до 29,2 °/о Sb. В некоторых разновидностях медь частично замещается серебром, цинком, железом, ртутью, а сурьма мышьяком и висмутом.

Буланжерит Pb5Sb4Sn, или 5PbS-2Sb2S3, содержит 55,4 % РЬ,

25.7 % Sb и 18,9 % S, иногда примесь галенита PbS и меди.
Джемсоинт Pb4FeSbeS,4, или 4PbS-FeS-3Sb2S3, содержит 40—50 %

РЬ, до 10 % Fe, около 30 % Sb, около 20 % S, часто примеси меди, цин­ка и серебра.

Бурноннт CuPbSbS3 содержит 13 % Си, 42,5 % РЬ, 24,7 Sb, 19,8 S и обычно примеси железа и серебра.

Ливиигстонит HgSb4S7 содержит 22 % Hg, 53,4 % Sb, 24,6 % S. Кермезит Sb2S20, или 2Sb203-Sb2S3, содержит 74,9—75,2 % Sb,

19.8 % S, 5,0 % О.

Валентинит Sb203 содержит 83,5 % Sb, 16,5 % О. Сервантит Sb204, или Sb203-Sb205, содержит 79,2% Sb, 20,8 % О. Стабиконит (Са, Sb)2-Sb206(0-OH) содержит 57,9—75,0 % Sb. Гидроромент Ca2-*Sb2(0, 0Н)6_,Н20 содержит до 50,0% Sb. По степени окисленности сурьмяные руды подразделяют на три ос­новные группы: сульфидные (с окисленностью до 20 %), смешанные окснсульфидные (до 60 % оксидов сурьмы) и окисленные (более 60 % окси­дов сурьмы).

По вещественному составу сурьмяные руды классифицируют следую, щим образом:

I. Собственно сурьмяные руды, в которых рудные минералы представ-лены антимонитом и продуктами его окисления. Такие руды дают боль-шую часть сурьмы.

И. Комплексные сурьмяные руды: ртутно-сурьмяные, свинцово-сурь-мяные, золото-сурьмяные, сурьмяно-вольфрамовые и сурьмяно-никелевые.

В соответствии с требованиями металлургического передела сурьмя­ное сырье (концентраты) условно подразделяют по содержанию сурьмы иа бедное (до 25 %), рядовое (25—45 %) и богатое .(более 45 %).

Богатые руды предпочтительнее обрабатывать по гравитационным или комбинированным гравитационно-флотационным схемам, а рядовые и бедные — методом флотации.

Окисленные руды подвергают дистилляционному обжигу, который ос­нован на выделении сурьмы в виде летучего оксида (III) Sb203, улав­ливаемого из печных газов с целью последующего получения металла восстановительной плавкой возгонов.

В зависимости от состава сырья металлическую сурьму получают пиро- или гидрометаллургическими методами. К пирометаллургическим методам относятся: осадительная (осадительно-восстановительная) и вос­становительная плавки. Осадительная плавка, для которой используют рядовое и богатое сульфидное и сульфидно-окисленное сырье, заключа­ется в вытеснении сурьмы из ее сульфида железом, которое вводят в шихту в виде железной или чугунной стружки. Восстановительная плав­ка, для которой используют рядовое и богатое окисленное сырье, сурь­мяные пыли и возгоны, основана на восстановлении оксидов сурьмы (в основном Sb Oi) до металла твердым углеродом.

Кроме рассмотренных основных пирометаллургических способов пе­реработки сульфидных сурьмяных концентратов, применяют также реак­ционную и окислительно-реакционную плавки, содовую плавку, плавку на штейн, плавку иа возгон.

Гидрометаллургическим методом перерабатывают чисто сурьмяные и комплексные концентраты. Этот метод включает две стадии: выщелачи­вание сурьмы из сырья в растворителях и выделение металла из полу­ченных растворов. Вторая стадия осуществляется либо цементацией Цинком и алюминием, либо электролизом. Из электролитических способов выделения сурьмы наиболее широко применяется электролиз сульфидно-щелочных растворов.

Получаемый после пиро- и гидрометаллургической переработки сурь­мяного сырья черновой металл доводится до требований стандартов ме­тодами огневого и электролитического рафинирования. Огневое рафини­рование, основанное на окислении или сульфидировании содержащихся в сурьме примесей, ведут в отражательных печах. При сульфидировании используют элементарную серу, технический сульфид сурьмы (крудум) Sb2S3 или сульфидный сурьмяный концентрат. В процессе сульфидиро-вания удаляются железо, свинец, медь и другие примеси. Затем с при­менением твердого каустика (92—98 % NaOH) удаляют мышьяк в виде арсената натрия и серу при продувке воздуха под содовым шлаком. При наличии благородных металлов применяют электролитическое рафиниро­вание, позволяющее концентрировать эти металлы в шламе. Электроли­том служит сернокислый раствор SbF3, катодами — медные листы.

Для получения сурьмы особой чистоты используют химические спо­собы, многократную возгонку в вакууме, зонную плавку в среде инерт­ного газа.

Физические свойства

Атомные характеристики. Атомный помер 51, атомная масса 121,75 а. е. м., атомный объем 18,19*10—в м /моль, атомный радиус 0,161 нм, ионный радиус SbB+ 0,062 нм, Sb3+ 0,09 им, Sb3- 0,208 нм. Конфигурация внешних электронных оболочек 5s25p3. Значения потен­циалов ионизации / (эВ): 8,64; 16,7; 24,8. Электроотрицательность 1,9.

Химические свойства

Нормальный электродный потенциал реакции Sb + 40H- — 3e**SbOJ~b +2Н20 сро = — 0,67 В.

В соединениях проявляет степени окисления +3, +5, — 3.

В обычных условиях чистая сурьма устойчива, на воздухе не окис­ляется и сохраняет свою блестящую поверхность даже в присутствии влаги, при нагревании иа воздухе окисляется легко.

Сурьма нерастворима в воде, устойчива в концентрированной пла­виковой кислоте, разбавленных соляной и азотной кислотах. С концен­трированными соляной и горячей (90—95 °С) серной кислотами сурьма образует соответственно треххлористую сурьму SbCl3 и сульфит сурь­мы Sb2 (S04)3. В крепкой азотной кислоте сурьма также растворяется с образованием Sb203 или Sb205, но при этом образующаяся на поверх­ности сурьмы пленка оксидов сдерживает ее дальнейшее растворение.

Царская водка и смесь азотной и винной кислот легко растворяют сурьму, а фосфорная и некоторые органические кислоты растворяют ее слабее.

Растворы аммиака и гидроксидов щелочных металлов на сурьму не действуют. Чистая сурьма устойчива также в расплавах углекислого натрия, однако сухие щелочи калия и натрня при красном калении об­разуют с сурьмой соответствующие антимонаты (соли сурьмяной кис­лоты).

С кислородом сурьма образует ряд соединений, из которых практи­ческое значение имеют Sb203, Sb^O,,, Sb2Os.

С азотом сурьма не реагирует и соединений не образует.

С водородом сурьма образует сурьмянистый водород (стибин) SbH3.

С серой сурьма соединяется при сплавлении. Известны два сульфида Sb2S3 и Sb2S5.

С галогенами сурьма образует соединения типа Sb;c3 и Sbx5 (пента-бромидов и пентаиодидов не образует). Практическое значение имеют главным образом галогениды трехвалентной сурьмы, в частности хло­риды и фториды (треххлористая сурьма SbCl3 и трехфтористая сурь­ма SbF3).

Со многими металлами сурьма легко образует сплавы — антнмони-ды. Таким мягким металлам, как свинец и олово, она придает твер­дость, повышая их механические свойства; сплавам железа, наоборот, сообщает хрупкость.

В ряде случаев сурьма образует химические соединения, например Na3Sb, NaSb, K3Sb, KSb, Ca3Sb2, AlSb, GaSb, InSb, FeSb2, Cu,Sb, Cu2Sb, Ni2Sb3, NiSb, Ag3Sb.

Co свинцом и оловом сурьма соединений не дает. С этими металла­ми в расплавленном состоянии сурьма смешивается в любых соотно­шениях. Эвтектическая смесь с 11,1 % (по массе) Sb имеет температуру плавления 252°С.

Особое положение среди сплавов с сурьмой занимают антимониды индия, галлия, алюминия, кобальта, цинка, теллура, кадмия, кальция, ртути, хрома, железа, цезия, калия и натрия, обладающие полупровод­никовыми свойствами. Наибольший интерес представляет антимонид индия, имеющий наибольшую величину подвижности носителей среди всех известных полупроводниковых материалов.

Электрохимический эквивалент трехвалентной сурьмы 0,48059 мг/Кл, пятивалентной 0,25235 мг/Кл.

Технологические свойства

Техническая сурьма хрупка в широком интервале температур. Для нее характерен резкий хрупко-вязкий переход, температура которого сни­жается по мере повышения степени чистоты и уменьшения скорости деформации. Сурьма чистотой 99,997 % имеет гх = 300 —310 °С, а высокочнстые монокристаллы пластичны при 20 °С и хрупки при —40 °С.

Области применения

Преимущественные области применения'

СуООООО, СуОООО — полупроводниковая и электронная техника.

СуООО — для производства сурьмы высших марок, применяемых в полупроводниковой технике.

СуОО — для изготовления специальных аккумуляторов, эмалей и сплавов.

СуО — для изготовления специальных аккумуляторов, антифрикци­онных и типографских сплавов.

Су1Э — для изготовления специальных аккумуляторов, антифрикци­онных и типографских сплавов и эмалей

Су2 — для изготовления аккумуляторов, антифрикционных и типо­графских сплавов.

Известно более 200 различных сплавов промышленного значения, содержащих сурьму, легирование которой повышает их механические и литейные свойства. В основном это сплавы цветных металлов — свин­ца, олова, в которых присутствуют до 37 % Sb.

Основное количество (до 80 %) металлической сурьмы используется для получения твердого аккумуляторного свинца, содержащего 4— 12 % Sb. Применение сурьмянистого сплава позволяет получать тонкие и достаточно прочные отливки аккумуляторных решеток высокого ка­чества, что обеспечивает небольшие габариты аккумуляторных бата­рей Кроме того, добавки сурьмы снижают влияние электрохимической коррозии.

Сплавы на свинцовой основе с добавками сурьмы характеризуются легкоплавкостью и обеспечивают высокое качество отливки шрифтов.

6—10 % первичной металлической сурьмы идет для приготовления подшипниковых сплавов (баббитов) с содержанием 3—15 % Sb.

Сурьму вводят также в сплавы на основе свинца, используемые для изготовления оболочек электрических кабелей (0,7—1 % Sb).

Известное количество сурьмы расходуется для приготовления свин­цовых сердечников пуль и артиллерийской шрапнели, а также охотни­чьей дроби.

В последнее время особо чистую сурьму начали использовать для получения иигерметаллических соединений с индием, галлием н алюми­нием, применяемых в полупроводниковой технике. Чистую сурьму применяют и как донорную добавку при производстве полупроводников из германия.

Широкое применение в промышленности имеют ее соединения и прежде всего оксид сурьмы (III), который используется как глушитель эмалей, а также для приготовления стекла с малым коэффициентом преломления. Большое количество Sb203 расходуется при производстве огнестойких тканей. Применение Sb203 для эмалирования ограничива­ется изделиями, не связанными с приготовлением пищи, так как воз­можно образование ядовитых соединений трехвалентной сурьмы. Ок­сид сурьмы (III) идет также на изготовление белил, обладающих вы­сокой кроющей способностью.

Трехсернистая сурьма используется для изготовления зажигатель­ных смесей, применяемых в пиротехнике и при производстве спичек.

Пятисернистая сурьма широко используется в резиновой промышлен­ности как наполнитель, придающий эластичность красной медицинской резине.

Другие соединения сурьмы — соль Шлиппе Na3SbS4.9H20, антимо-нил тартрат калия, или рвотный камень K(SbO )C4H-1/2H 0, щавеле­вокислая сурьма Sb20(C204)2 и фтористые соединения SbF3(NH ,i )2S0и 4SbF3 — используются в текстильной промышленности при травлении и окраске тканей. Соль Шлиппе применяется также для очистки раст­воров при электролизе цинка.

Треххлористая сурьма служит исходным материалом для получения органических комплексов, используемых в медицине и других областях, а также для получения чистой Sb203, применяемой в металлургии полу­проводников.

Фториды сурьмы SbF3 и SbFs применяются в качестве фторирующих средств (замещение хлора и брома) неорганических и органических сое­динений.

Имеется ряд сурьмаорганических соединений, которые обладают весьма ценными лекарственными свойствами и используются в меди­цине.

Радиоактивный изотоп Sb применяется в источниках у-излучения и источниках нейтронов.

Русский
Предмет: