Вы здесь

Клеточное ядро

Ядро было открыто и описано в 1833 г. англичанином Р. Броуном. Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки.

Ядро бывает шаровидной или овальной формы. В некоторых клетках встречаются сегментированные ядра. Размеры ядер - от 3 до 10 мкм в диаметре.

Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК.

Ядро имеет ядерную оболочку, отделяющую его от цитоплазмы, кариоплазму (ядерный сок), одно или несколько ядрышек, хроматин

Клеточное ядро

Ядерная оболочка состоит из двух мембран. В ней имеются поры, играющие важную роль в переносе веществ в цитоплазму и из нее. Поры не являются постоянными образованиями. Их число меняется в зависимости от функциональной активности ядра. Число пор увеличивается в период наибольшей ядерной активности. Ядерная оболочка связана непосредственно с эндоплазматической сетью.

На наружной мембране ядерной оболочки, с внешней стороны находятся рибосомы, синтезирующие специфические белки, образующиеся только на рибосомах ядерной оболочки.

Ядерный сок (кариоплазма) - внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем

присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок обеспечивает нормальное функционирование генетического материала.

Ядрышки - обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро. В ядрышках происходит синтез р-РНК, других видов РНК и образование субъединиц рибосом.

Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами. Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены р-РНК.

Хроматин (окрашенный материал) - плотное вещество ядра, хорошо окрашиваемое основными красителями. В состав хроматина входят молекулы ДНК в комплексе с белками (гистонами и негистонами), РНК.

В неделящихся (интерфазных) ядрах хроматин может равномерно заполнять объем ядра, находясь в деконденсированном состоянии. Этот диффузный хроматин (эухроматин) генетически активен. Молекулы ДНК, содержащие наследственную информацию, способны удваиваться при репликации, и возможна передача (транскрипция) генетической информации с ДНК на и-РНК.

Иногда в интерфазном ядре бывают видны глыбки хроматина, представляющие собой участки конденсированного хроматина (гетерохроматина). Это неактивные участки. Например, в клетках женского организма, где присутствуют две X -хромосомы, одна находится в активном диффузном состоянии, а вторая в неактивном, конденсированном состоянии.

Во время деления ядра хроматин окрашивается интенсивнее, происходит его конденсация - образование более спирализованных (скрученных) нитей, называе­мых хромосомами.

Хромосомы синтетически неактивны. Строение хромосом лучше всего изучать в момент их наибольшей конденсации, т. е. в метафазе и начале анафазы митоза.

Каждая хромосома в метафазе митоза состоит из двух хроматид, образовавшихся в результате редупликации, и соединенных центромерой (первичной перетяжкой). В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки нитей веретена (рис. 47). В анафазе хроматиды отделены друг от друга. Из них образуются дочерние хромосомы, содержащие одинаковую генетическую информацию. Центромера делит хромосому на два плеча. Хромосомы с равными плечами называют равноплечими или метацентрическими, с плечами неодинаковой длины - неравноплечими -субметацентрическими, с одним коротким и вторым почти незаметным — палочковидными или акроцентрическими.

Некоторые хромосомы имеют вторичную перетяжку, отделяющую спутник. Вторичные перетяжки называют ядрышковыми организаторами. В них в интерфазе происходит образование ядрышка. В ядрышковых организаторах находится ДНК,

отвечающая за синтез р-РНК. Плечи хромосом оканчиваются участками, называемыми теломерами, не способными соединяться с другими хромосомами.

Клеточное ядро

Кинетохоры располагаются в центромерном районе хромосом. / - кинетохор, 2 - пучок кинетохорных микротрубочек; 3 - хроматида.

Число, размер и форма хромосом в наборе у разных видов могут варьировать. Совокупность признаков хромосомного набора называют кариотипом

Клеточное ядро

Хромосомный набор специфичен и постоянен для особей каждого вида. У человека 46 хромосом, у мыши - 40 хромосом и т.д.

В соматических клетках, имеющих диплоидный набор хромосом, хромосомы парные. Их называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая - от отцовского.

Изменения в структуре хромосом или в их числе возникают в результате мутаций.

Каждая пара хромосом в наборе индивидуальна. Хромосомы из разных пар называют негомологичными.

В кариотипе различают половые хромосомы (у человека это Х-хромосома и Y -хромосома) и аутосомы (все остальные).

Половые клетки имеют гаплоидный набор хромосом.

Основу хромосомы составляет молекула ДНК, связанная с белками (гистонами и др.) в нуклеопротеид.

Основное положение молекулярной биологии, сформулированное Ф. Криком, утверждает, что перенос генетической информации осуществляется:

1) от ДНК к ДНК путем репликации;

2) от ДНК через и-РНК (м-РНК) к белку.

Процесс самовоспроизведения макромолекул нуклеиновых кислот (репликация) обеспечивает точное копирование генетической информации и передачу ее от поколения к поколению.

Принцип комплементарности, лежащий в основе структуры молекулы ДНК, дает возможность понять, как синтезируются новые молекулы в синтетическом периоде интерфазы жизненного цикла клетки перед ее делением.

Предмет: 

Тест тест